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Fluid dampers that operate on the principle of #uid #ow through ori"ces specially shaped
and de"ned by the Maxwell model have found more and more applications in vibration
mitigation of buildings and structures. This paper thus presents an accurate and e!ective
procedure for determining dynamic characteristics and seismic response of adjacent
buildings linked by #uid dampers. Dynamic characteristics of damper-linked adjacent
buildings are obtained by solving the eigenvalue problem for real non-symmetric matrices.
Random seismic response of adjacent buildings linked by dampers is determined by
a combination of the state-space method and the pseudo-excitation method. Based on
a derived formula, a computer program is written and extensive parametric studies are
performed to assess the e!ectiveness of the #uid damper and to identify bene"cial damper
relaxation time and damping coe$cient at zero frequency. It is shown that using the
Maxwell model-de"ned #uid dampers of proper parameters to link adjacent buildings can
increase the modal damping ratios and reduce the seismic responses of adjacent buildings
signi"cantly. It is also shown that the behaviour of the adjacent buildings linked by the
Maxwell model-de"ned #uid dampers could be the same as that connected by the Voigt
model-de"ned viscoelastic dampers.

( 2000 Academic Press
1. INTRODUCTION

Buildings in a modern city are often built close to one another but, in most cases, they are
separated without any structural connections or are connected only at the ground level.
Hence, earthquake-resistant capacity of each building mainly depends on the building itself.
To improve the earthquake resistance of these buildings, the concept of using control
devices to link adjacent buildings has been presented.

Kobori et al. developed bell-shaped hollow connectors to link very closely spaced
adjacent buildings in a complex [1]. Seto and Matsumoto suggested using active actuators
to connect a group of buildings for controlling their seismic response [2]. Yamada et al. let
active actuators generate negative sti!ness so as to shift the natural frequencies of adjacent
buildings away from the dominant frequency of ground motion to reduce seismic response
[3]. Xu et al. carried out a preliminary investigation on earthquake-resistance performance
of adjacent buildings connected by viscoelastic dampers [4]. In their study, the Voigt model
was used to represent viscoelastic dampers, and the seismic response of adjacent buildings
was determined by the pseudo-excitation method. The studies demonstrated that
viscoelastic dampers of proper parameters could signi"cantly reduce the seismic response of
adjacent buildings.

The Voigt model, however, may not be suitable for de"ning the #uid dampers that utilize
#uid #ow through specially shaped ori"ces. Investigations carried out by Constantinou and
022-460X/00/250775#22 $35.00/0 ( 2000 Academic Press
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Symans [5] show that the #uid damper exhibits viscoelastic #uid behavior, and that the
simplest model to account for this behavior is the Maxwell model. This paper thus aims to
present an accurate and e!ective procedure for determining dynamic characteristics and
seismic response of adjacent buildings linked by #uid dampers and to identify bene"cial
parameters of #uid dampers for achieving the maximum modal damping ratio and the
maximum seismic response reduction of adjacent buildings. The e!ectiveness of the
Maxwell model-de"ned #uid dampers is also compared with the Voigt model-de"ned
viscoelastic dampers.

2. EQUATIONS OF MOTION

To capture important characteristics and seismic behavior of #uid damper-connected
adjacent buildings and to make the problem manageable, only the two-dimensional system
consisting of two linear elastic shear buildings connected by #uid dampers at each #oor of
the same level is considered in the present study (see Figure 1). The mass of each building is
concentrated at its #oor and the sti!ness is provided by its massless columns. Both buildings
are assumed to be subjected to the same base acceleration, and any e!ects due to spatial
variations of the ground motion or due to soil}structure interactions are neglected. The
#uid damper commercially available consists of a cylinder and a stainless-steel piston with
a bronze ori"ce head and an accumulator. The ori"ce utilizes a series of specially shaped
passages to alter #ow characteristics with #uid speed. The research carried out by
Constantinou and Symans [5] on the #uid damper showed that the Maxwell model
proposed by Bird [6] can be used to describe the viscoelastic #uid behavior of the #uid
damper applicable to civil engineering structures.

fC#j
d fC(t)

dt
"C

0
xR , (1)

where fC is the damper force, j is the relaxation time, C
0

is the damping coe$cient at zero
frequency, and xR is the damper velocity. The relaxation time j can be approximately
regarded as a ratio of the damping coe$cient at zero frequency to the spring sti!ness
coe$cient in a damper system in which one spring and one dashpot are connected in series.
However, for a real #uid damper, the relaxation time and the damping coe$cient at zero
frequency are identi"ed in a slightly di!erent way [5].

Assume that the total of degrees of freedom of two adjacent buildings is N (see Figure 1),
in which the number of degrees of freedom of the left building is ¸ with its "rst #oor
designated as the "rst degree of freedom. N!¸ is then the number of degrees of freedom of
the right building with its "rst #oor designated as the ¸#1 degree of freedom. The
equations of motion of the building}damper system can then be expressed as

MXG (t)#CXG (t)#KX(t)#fC"!MEXG
g
(t) (2)

with the Maxwell model

fC#Kf0C"DX0 , (3)

where M, C, and K are the mass, damping, and sti!ness matrices of the adjacent buildings,
respectively, K and D are the relaxation time and zero-frequency damping coe$cient
matrices, respectively, of the #uid dampers, X (t) is the vector of relative displacement
response with respect to the ground with the left building's displacements in the "rst
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Figure 1. Structural model of adjacent buildings with #uid dampers.
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¸ positions and the right building's displacements in the last N!¸ positions, fC is the
damper force vector, E is an index vector with all its elements equal to 1, and XG

g
(t) is the

ground acceleration.
Denote the mass, shear sti!ness, and external damping coe$cient and internal damping

coe$cient of the adjacent buildings as m
i
, k

i
, b

i
, c

i
(i"1, 2,2, N), respectively, and the
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relaxation time and damping coe$cient at zero frequency of the #uid damper at the ith #oor
as j

i
and C

0i
respectively. The details of each matrix can then be given as follows:

The mass matrix of the adjacent buildings is

M"diag[m
1
, m

2
,2,m

N
]. (4)

The damping matrix of the adjacent building is

C"Ce#Ci, (5)

in which the external damping matrix is

Ce"diag[b
1
, b

2
,2, b

N
] (6)

and the internal damping matrix is

Ci"C
C

L
0

0

C
R
D, (7)

C
L
"

c
1
#c

2
!c

2
!c

2
c
2
#c

3
!c

3
'

'

!c
L~1

c
L~1

#c
L

!c
L

!c
L

c
L

, (8)

C
R
"

c
L`1

#c
L`2

!c
L`2

!c
L`2

c
L`2

#c
L`3

!c
L`3
'

'

!c
N~1

c
N~1

#c
N

!c
N

!c
N

c
N

. (9)

The sti!ness matrix of the adjacent buildings is

K"C
K

L
0

0

K
R
D, (10)

K
L
"

k
1
#k

2
!k

2
!k

2
k
2
#k

3
!k

3
'

'

!k
L~1

k
L~1

#k
L

!k
L

!k
L

k
L

, (11)
JSV 19992735



BUILDING LINKED BY FLUID DAMPERS 779
K
R
"

k
L`1

#k
L`2

!k
L`2

!k
L`2

k
L`2

#k
L`3

!k
L`3
'

'

!k
N~1

k
N~1

#k
N

!k
N

!k
N

k
N

. (12)

The relaxation time matrix of the #uid damper is

K"diag[K
(N~L)](N~L)

, 0
(2L~N)](2L~N)

, K
(N~L)](N~L)

] (if N(2¸), (13)

in which

K
(N~L)](N~L)

"diag[j
1
, j

2
,2, j

(N~L)
] (14)

or

K"diag[K
L]L

, K
L]L

, 0
(N~2L)](N~2L)

] (if N*2¸), (15)

K
L]L

"diag[j
1
, j

2
,2, j

L
]. (16)

The zero-frequency damping coe$cient matrix of the #uid damper is

D"

D
(N~L)](N~L)

0
(N~L)](2L~N)

!D
(N~L)](N~L)

0
(2L~N)](N~L)

0
(2L~N)](2L~N)

0
(2L~N)](N~L)

!D
(N~L)](N~L)

0
(N~L)](2L~N)

D
(N~L)](N~L)

(if N(2¸), (17)

in which

D
(N~L)](N~L)

"diag[C
0,1

, C
0,2

,2, C
0, N~L

] (18)

or

D"

D
L]L

!D
L]L

0
(N~2L)]L

!D
L]L

D
L]L

0
(N~2L)]L

0
(N~2L)]L

0
(N~2L)]L

0
(N~2L)](N~2L)

(if N*2¸), (19)

in which

D
L]L

"diag[C
0,1

, C
0,2

,2,C
0,L

]. (20)

3. DYNAMIC CHARACTERISTICS

Since the adjacent buildings linked by #uid dampers are non-classically damped systems
with unsymmetrical property matrices, the general eigenvalue analysis is employed in this
study to determine the dynamic characteristics of the system. The equations of motion
(equations (2) and (3)) can be replaced by an equivalent "rst order di!erential equation of
the form

AY0 #BY"FXG
g
(t), (21)
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in which

A"

M 0 0

0 I 0

0 0 K

, B"

C K I

!I 0 0

!D 0 I

, F"G
!ME

0

0 H and Y"G
X0

X

fCH
(22)

and I is the identity matrix. Matrices A and B are of size 3N]3N.
Since the matrix B in equation (22) is not symmetric, one needs to solve the following two

adjoining eigenvalue problems:

(sA#B)/)"0 and (sAT#BT)t)"0, (23)

where s is an eigenvalue, and /) and t) are the corresponding right eigenvector and left
eigenvector, respectively, of the form

/)"G
s/

/

h H, t)"G
st

t

0 H. (24, 25)

The solution of each eigenvalue problem comprises a set of 3N eigenvalues and eigenvectors
that are either real or exist in complex conjugate pairs. Among these 3N eigenvalues and
eigenvectors, there are N real eigenvalues and eigenvectors attributed to #uid dampers. If
the practical damper parameters are taken into consideration, the N real eigenvalues
attributed to #uid dampers are very large in general. Some of them may be in"nite if the
damper relaxation time is equal to zero or there is no #uid damper at all. For this reason,
the N real eigenvalues related to the #uid dampers are denoted by s

j`2N
( j"1, 2,2,N) in

this study.
If the adjacent buildings linked by #uid dampers still belong to an underdamped system,

the remaining 2N eigenvalues and eigenvectors (either right eigenvectors or left
eigenvectors) will be in complex conjugate pairs.

/)
j
"/) *

j`N
and s

j
"s*

j`N
. (26)

Each eigenvalue can be written in the form

s
j
"s*

j`N
"!u

i
m
j
#iu

dj
( j"1, 2,2,N), (27)

in which

u
j
"Ds

j
D, m

j
"!Re(s

j
)/Ds

j
D and u

dj
"u

j
J1!m2

j
. (28)

u
j
, u

dj
, and m

j
are the modal frequency, the damped modal frequency, and the modal

damping ratio, respectively, associated with mode j. The superscript * means the
conjugation. For the underdamped mode, the value of m

j
is always less than one.

In some cases, which depend on the selected damper parameters, there are some
real-valued negative pairs among the 2N eigenvalues. The system may be called the mixed
damped system in this situation, and it is convenient to express real pair s

j
in the following

form analogous to equation (27):

s
j
"!u

j
m
j
#u

dj
( j"1, 2,2, N), (29)

s
j`N

"!u
j
m
j
!u

dj
( j"1, 2,2, N), (30)
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in which u
j
, u

dj
and m

j
are determined, respectively, by

u
j
"Js

j
s
j`N

, m
j
"!(s

j
#s

j`N
)/(2u

j
)

and u
dj
"u

j
Jm2

j
!1"(s

j
!s

j`N
)/2. (31)

The value of m
j
is now equal to or greater than one.

The eigenvalue analysis of a #uid damper-adjacent building system carried out here is
mainly to determine the modal damping ratio and natural frequency of the system
attributed to #uid dampers and to "nd optimal damper parameters for achieving the
maximum modal damping ratio. Thus, it is desirable to know the sensitivities of the jth
modal damping ratio and jth natural frequency to the mth damper relaxation time or the
mth damper damping coe$cient at zero frequency. For this purpose, the partial derivative
of the "rst expression in equation (23) with respect to the mth damper relaxation time j

m
is

taken, which leads to

A
Ls

j
Lj

m

A#s
j

LA

Lj
m
B/)

j
#(s

j
A#B)

L/)
j

Lj
m

"0. (32)

Multiplying equation (32) by t) T
j

and using the relationship

t) T
j
(s
j
A#B)"0, (33)

one obtains

Ls
j

Lj
m

"!Asjt) Tj
LA

Lj
m

/)
jBNA

j
"!s

j
K

jm
/A

j
, (34)

in which

K
jm
"0T

j

LK

Lj
m

h
j
, (35)

A
j
"t) T

j
A/)

j
. (36)

For the underdamped mode, di!erentiating the following relationships with respect to the
mth damper relaxation time j

m
:

s
j
s*
j
"u2

j
and s

j
#s*

j
"!2m

j
u

j
(37)

and using equation (34) yields

Lu
j

Lj
m

"!u
j
ReA

K
jm

A
j
B, (38)

Lm
j

Lj
m

"!J1!m2
j
ImA

K
jm

A
j
B. (39)

These two equations can be used for the sensitivity study of the natural frequency and
modal damping ratio with respect to damper relaxation time.

In a similar way, one can obtain

Ls
j

LC
0,m

"!At) Tj
LB

LC
0,m

/)
jB/Aj

"!s
j
D

jm
/A

j
, (40)

in which

D
jm
"0T

j

LD

LC
0,m

/
j
. (41)
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For the underdamped mode, the sensitivities of the natural frequency and modal damping
ratio with respect to zero-frequency damping coe$cient C

0,m
are as follows:

Lu
j

LC
0,m

"u
j
Re A

D
jm

A
j
B , (42)

Lm
j

LC
0,m

"J1!m2
j
Im A

D
jm

A
j
B . (43)

For the overdamped mode, one can get the following four equations for sensitivity study:

Lu
j

Lj
m

"!

u
j

2 A
K

jm
A

jm

#

K
j`N,m

A
j`N,m

B , (44)

Lm
j

Lj
m

"

Jm2
j
!1

2 AKjm
A

jm

!

K
j`N,m

A
j`N,mB , (45)

Lu
j

Lj
m

"

u
j

2 A
D

jm
A

jm

#

D
j`N,m

A
j`N,mB , (46)

Lm
j

Lj
m

"!
Jm2

j
!1
2 A

D
jm

A
jm

!

D
j`N,m

A
j`N,mB . (47)

4. SEISMIC RESPONSE

The state-space method adopts the following co-ordinate transformation to decouple
equation (21).

Y"UZ, (48)

where Z is the 3N-dimensional generalized co-ordinate vector and U is the 3N]3N
complex modal matrix.

U"[/)
1
, /)

2
,2,/)

3N
]. (49)

By using the co-ordinate transformation and the orthogonality between the right
eigenvectors and the left eigenvectors, equation (21) can be reduced to 3N
decoupled modal equations with the jth modal equation being

ZQ
j
!s

j
Z

j
"r

j
XG

g
(t), (50)

in which

r
j
"t) T

j
F/A

j
"!s

j
tT

j
ME/A

j
. (51)

Assume that the ground acceleration XG
g
(t) is a stationary random process and its power

spectral density function is given as S
g
(u). A pseudo-excitation method in conjuncation with

the state-space method can be developed to determine the seismic response of adjacent
buildings linked by #uid dampers. Pseudo-excitation is constituted for a given frequency
u as

XG
g
(t)"JS

g
(u)e*ut. (52)

The solution of the "rst order equation (50) to the pseudo-excitation is

Z
j
(u, t)"

r
j

iu!s
j

JS
g
(u)e*ut ( j"1, 2,2, 3N). (53)
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Substituting equation (53) into equation (48) and comparing with the last
expression of equation (22), one obtains

X(u, t)"
3N
+
j/1

/
j
Z

j
(u, t)"

3N
+
j/1

/
j

r
j

iu!s
j

JS
g
(u)e*ut. (54)

Since the eigenvectors are in pairs for either the underdamped or the overdamped mode,
equation (54) can be reduced to

X(u, t)"A
N
+
j/1

H
j
(u)(iua

j
#b

j
)#

3N
+

j/2N`1

/
j

r
j

iu!s
j
BJS

g
(u)e*ut"X(u)e*ut, (55)

in which X(u) is called the pseudo-displacement, and H
j
(u) is the frequency response

function for the jth mode. When the jth mode is an underdamped mode

a
j
"2 Re(/

j
r
j
) and b

j
"!2 Re(/

j
r
j
s*
j
). (56)

When the jth mode is an overdamped mode

a
j
"(/

j
r
j
#/

j`N
r
j`N

) and b
j
"!(/

j
r
j
s
j`N

#/
j`N

r
j`N

s
j
). (57)

In a similar way, the pseudo-velocity response can be obtained by

X0 (u)"A
N
+
j/1

H
j
(u)(iuk

j
#l

j
)#

3N
+

j/2N`1

s
j
/
j

r
j

iu!s
j
BJS

g
(u). (58)

When the jth mode is an underdamped mode,

k
j
"2Re(s

j
/

j
r
j
) and l

j
"!2u2

j
Re(/

j
r
j
). (59)

When the jth mode is an overdamped mode,

k
j
"(s

j
/
j
r
j
#s

j`N
/

j`N
r
j`N

) and l
j
"!u2

j
(/

j
r
j
#/

j`N
r
j`N

). (60)

In practice, only the "rst q (q@3N) modes are needed to be included when calculating
seismic response. Thus, the pseudo-displacement can be simpli"ed as

X(u)"A
q
+
j/1

H
j
(u)(iua

j
#b

j
)BJS

g
(u). (61)

Once the pseudo-displacement is determined, the pseudo-internal force can be easily
determined following a static analysis. For instance, the pseudo-shear force of the adjacent
buildings can be calculated by

Q(u, t)"GX(u, t), (62)
where

G"C
G

L
0

0

G
R
D (63)
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and

G
L
"

k
1

!k
2

k
2

)

)

!k
L~1

k
L~1

!k
L

k
L

, (64)

G
R
"

k
L`1

!k
L`2

k
L`2

)

)

!k
N~1

k
N~1

!k
N

k
N

. (65)

The response spectral matrix can be obtained as

S
XX

(u)"X*(u)XT (u), (66)

S
X0 X0

(u)"X0 * (u)X0 T (u), (67)

S
QQ

(u)"Q*(u)QT(u). (68)

It should be pointed out that the pseudo-excitation method used in conjunction with the
state-space method is a natural extension of the original pseudo-excitation method
suggested by Lin et al. for the classically damped structures (or uncontrolled structures) [7].
By using the mixed method proposed here, the cross-correlation terms between vibration
modes in the seismic response can be retained for the non-classically damped systems. The
present mixed method can also easily provide internal force and damper force responses.
Finally, the standard deviation displacement and acceleration responses of the jth #oor can
be evaluated as

p2
Xj
"P

`=

~=

S
XjXj

(u) du, p2
XG j
"P

`=

~=

u2S
X0 jX0 j

(u) du. (69)

5. APPLICATION

For application, two 20-story buildings having the same #oor elevations with dampers
connecting two neighboring #oors are used. The mass, shear sti!ness, and external damping
coe$cient of the left building (also called the sti!er building, see Figure 1) are uniform for all
stories with a mass of 1)29]106 kg, a shear sti!ness of 4)0]109 N/m, and an external
damping coe$cient of 1)0]105 Ns/m. For the right building (also called the softer
building), the mass, shear sti!ness, and external damping coe$cient are uniform for all
stories with the same mass and damping coe$cient as the left building except the shear
sti!ness which is 2)0]109 N/m only. Hence, the two buildings have the same height but the
right building is most slender than the left building. The internal damping coe$cients are
set to zero for both the buildings. The same adjacent buildings were used by Xu et al. for the
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BUILDING LINKED BY FLUID DAMPERS 785
adjacent buildings linked by Voigt model-de"ned viscoelastic dampers [4]. Thus,
a comparison of the e!ectiveness between the Voigt model-de"ned viscoelastic dampers and
the Maxwell model de"ned #uid dampers can be made.

The Kanai}Tajimi "ltered white-noise spectrum is used as the ground acceleration
spectrum in the computation. The characteristic ground frequency, the characteristic
damping ratio, and the intensity of an earthquake in the ground acceleration spectrum are
selected as u

g
"15)0 rad/s, m

g
"0)65, and S

0
"4)65]10~4 m2/rad s3 respectively.

S
g
(u)"

1#4m2
g
(u/u

g
)2

[1!(u/u
g
)2]2#4m2

g
(u/u

g
)2

S
0
. (70)

Fluid dampers used to connect every two neighboring #oors are assumed to have the same
relaxation time j and zero frequency-damping coe$cient C

0
.

5.1. MODAL FREQUENCIES AND DAMPING RATIOS

Within the frequency range between 0 and 20)00 rad/s, the "rst three modal frequencies of
the right building without #uid dampers are 3)02, 9)03 and 14)99 rad/s. The "rst two modal
frequencies of the left building without #uid dampers are 4)27 and 12)77 rad/s. When every
two neighboring #oors of the adjacent buildings are linked by the #uid dampers of the same
relaxation time of 0)001 s and the same zero frequency damping coe$cient of
1)42]106 Ns/m, the "rst "ve modal frequencies of the damper}building system obtained
from the complex eigenvalue analysis are 3)28, 3)93, 9)11, 12)68 and 15)04 rad/s. Obviously,
using the #uid dampers to link the adjacent buildings slightly changes the "rst modal
frequency of each building but other natural frequencies remain almost unchanged. The
retention of the natural frequencies of the unlinked buildings after the installation of the
joint dampers is especially desirable for the adjacent buildings that have been already built
and need to be strengthened.

As to modal damping ratios, the "rst three modal damping ratios in the unlinked left
building are calculated as 1)28, 0)43, and 0)26% respectively. The "rst two model damping
ratios in the unlinked right building are computed as 0)91 and 0)30%. For the linked
building}damper system, the "rst "ve modal damping ratios obtained from the complex
eigenvalue analysis are 22)27, 11)47, 6)56, 4)60, and 3)93%. Thus, one can expect that the
seismic response of the adjacent buildings will be tremendously reduced.

The "rst "ve natural frequencies and modal damping ratios of the adjacent buildings
linked by the Voigt model-de"ned viscoelastic dampers were also calculated by the writers.
With the optimal damper sti!ness of 1)0]105 N/m and optimal damper damping
coe$cient of 1)0]106 Ns/m, the "rst "ve modal frequencies of the damper}building system
are 3)14, 4)12, 0)97, 12)73 and 15)02 rad/s. The "rst "ve modal damping ratios of the system
are 14)44, 9)68, 4)73, 3)33, and 2)85%. Clearly, the use of #uid dampers provides more
damping ratios than the use of viscoelastic dampers. However, the "rst two natural
frequencies of the damper}building system with either #uid dampers or viscoelastic
dampers are far away from the dominant frequency of the ground acceleration (15 rad/s in
this study). Thus, the earthquake-response reduction of the damper}building system with
the #uid dampers may not be much larger than the system with the viscoelastic dampers.

The relaxation time and zero-frequency damping coe$cient of the #uid dampers used in
the foregoing calculation are optimal parameters determined through a parametric study.
In the parametric study, the modal frequencies and damping ratios of the building}damper
system are computed against the relaxation time and zero-frequency damping coe$cient of
JSV 19992735



Figure 2. Variations of modal frequencies with relaxation time:**, u
1
, C

0
"10; } } } }, u

2
, C

0
"10;* -*,

u
1
, C

0
"1)42]106; * - -*, u

2
, C

0
"1)42]106.

786 W. S. ZHANG AND Y. L. XU
the dampers. The bene"cial relaxation time j and zero-frequency damping coe$cient C
0

of
the dampers can thus be found for achieving the maximum modal damping ratio and
remaining the original modal frequencies almost unchanged. Figure 2 displays variations of
the "rst and second modal frequencies of the system with relaxation time j for
zero-frequency damping coe$cient C

0
"10 and 1)42]106 N s/m. It is seen that for the very

small zero-frequency damping coe$cient C
0
"10 Ns/m, the modal frequencies are almost

independent of relaxation time and the modal frequencies remain the same as those of the
unlinked adjacent buildings. This is because the very small zero-frequency damping
coe$cient plus very small relaxation time indicate that the connections provided by the
#uid dampers for the two buildings are very weak. For the zero-frequency damping
coe$cient C

0
"1)42]106 N s/m, the modal frequencies are slightly change. The modal

frequencies, however, do not depend on relaxation time until the relaxation time is equal to
0)01 s. If the relaxation time is beyond this value, the modal frequencies of the system will
"rst increase rapidly and then decrease rapidly towards those of the unlinked adjacent
buildings. This is mainly due to the large zero-frequency damping coe$cient and the
increase in the relaxation time.

Figure 3 shows variations of the "rst two modal damping ratios of the system with
relaxation time for three zero-frequency damping coe$cients. For the very small
zero-frequency damping coe$cient C

0
"10 Ns/m, the "rst two modal damping ratios are

almost the same as those for the unlinked adjacent buildings and do not depend on the
relaxation time concerned. With higher zero-frequency damping coe$cients, the "rst two
JSV 19992735



Figure 3. Variations of modal damping ratios with relaxation time: *e*, m
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BUILDING LINKED BY FLUID DAMPERS 787
modal damping ratios of the system increase signi"cantly and remain almost constant
within a relaxation time ranging from zero to 0)001 s. Beyond this range, the "rst modal
damping ratio will decrease rapidly with the increasing relaxation time and the second
modal damping ratio will "rst increase and then decrease towards those of unlinked
adjacent buildings. The reason behind these observations is similar to that for the variation
of natural frequencies. Furthermore, although the trend in Figure 3 shows that as the
relaxation time is increased to between 0)01 and 0)1 s, the two curves intersect and the
modal damping ratio is of approximately 17% for both the "rst and second modes of
vibration; the damping ratio is very sensitive to the small change in relaxation time. Thus,
from a practical point of view, the bene"cial value of time relaxation is selected as 0)001 s in
this study. Figure 3 also indicates that the zero-frequency damping coe$cient a!ects the
"rst two modal damping ratios of the system signi"cantly.

The variations of the "rst "ve modal frequencies with zero-frequency damping coe$cient
are shown in Figure 4 for the relaxation time of 0)001 s. All the modal frequencies remain
almost constant when the zero-frequency damping coe$cient is less than 5]105 Ns/m.
After that, the three modal frequencies dominated by the softer buildings (u

1
, u

3
, and u

5
)

become larger while the two modal frequencies governed by the sti!er building (u
2

and u
4
)

become smaller. This is because for a given relaxation time, the very large zero-frequency
ratio damping coe$cient is associated with the very large spring sti!ness coe$cient so that
the connections between the two building become more and more strong and the natural
frequencies of the two buildings more and more close.
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Figure 4. Variations of modal frequencies with zero-frequency damping coe$cient.
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The modal damping ratios in the three modes dominated by the softer building (m
1
, m

3
and m

5
) are depicted in Figure 5(a) against the zero-frequency damping coe$cient while the

modal damping ratios in the two modes dominated by the sti!er building (m
2

and m
4
) are

plotted in Figure 5(b). It is seen that for the zero-frequency damping coe$cient less than
about 1]104 Ns/m, the dampers have no e!ect on the modal damping ratios, and the
modal damping ratios come mainly from the buildings themselves. As the zero-frequency
damping coe$cient increases, all the modal damping ratios increase. However, when the
damper zero-frequency damping coe$cient is increased to certain values, the modal
damping ratios dominated by the sti!er building decrease while the modal damping ratios
governed by the softer building increase further and soon these modes of the softer building
become overdamped modes. Therefore, for a very large zero-frequency damping coe$cient,
the system behaves like a lightly damped sti!er building supported by a softer building that
has almost no vibration due to very high vibration energy dissipation capability. As for the
adjacent buildings concerned, the bene"cial value of zero-frequency damping coe$cient
should be selected as 1)42]106 Ns/m so that the second mode of the system (the "rst mode
of the sti!er building) will have the maximum value of m

2
. Of course, the "rst two modal

frequencies of the system have thus a slight change as seen from Figure 4.
Compared with the adjacent buildings linked by the Voigt model-de"ned viscoelastic

damper, it is found that the variations of modal damping ratio and modal frequency with
respect to the zero-frequency damping coe$cient of #uid damper are almost the same as
those with respect to the damping coe$cient of viscoelastic damper. The variations of
modal damping ratio and modal frequency with respect to the relaxation time of #uid
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Figure 5. Variations of modal damping ratios with zero-frequency damping coe$cient. (a) Modal damping
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damper are almost the same as those with respect to the sti!ness of the viscoelastic damper
when the relaxation time of #uid damper is less than 0)001 s and the sti!ness of viscoelastic
damper is less than 1)0]105 N/m. However, when the relaxation time of the #uid damper is
much larger than 0)001 s and the sti!ness of the viscoelastic damper is much larger than
1)0]105 N/m, the variations of modal frequency in the two cases are di!erent: the adjacent
buildings tend to be rigidly connected in the case of the viscoelastic dampers but tend to be
completely separated in the case of the #uid dampers.

A sensitivity study of modal frequency and modal damping ratio to relaxation time and
zero-frequency damping coe$cient is carried out at the optimum values C

0
of

1)42]106 Ns/m and j of 0)001 s. The sensitivity of the "rst modal frequency u
1

to changes
in j

i
or C

0i
(i"1, 2,2, 20) is depicted in Figure 6(a) in terms of Lu

1
/Lj

i
and Lu

1
/LC

0i
. The

sensitivity of the "rst-modal damping ratio m
1

to changes in j
i
or C

0i
(i"1, 2,2, 20) is
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Figure 6. Sensitivities of modal frequency and modal damping ratio. (a) Sensitivity of modal frequency:**, to
C

0i
; } }} }, to j

i
; (b) Sensitivity of modal damping ratio: **, to C

0i
, }} } }, to j

i
.

790 W. S. ZHANG AND Y. L. XU
plotted in Figure 6(b) by means of Lm
1
/Lj

i
and Lm

1
/LC

0i
. As expected, the "rst modal

frequency and "rst modal damping ratio are more sensitive to the damper at the top of the
buildings than others. The very low sensitivity to the dampers near the bottom of the
buildings may indicate no need to install these dampers. The negative sensitivity, or
gradient, of the "rst modal damping ratio to relaxation time is because as the relaxation
time increases, the "rst modal damping ratio decreases. Similar sensitivity results are found
for the second modal frequency and damping ratio. Since all the sensitivity values are small
even for the damper at the top of the buildings, one may conclude that the small deviations
of the dampers from its optimal values (C

0
"1)42]106 Ns/m and j"0)001 s) may not

a!ect the control e$ciency.
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5.2. SEISMIC RESPONSE

A seismic response analysis is carried out to investigate variations in seismic response of
the adjacent buildings with damper parameters to see if the optimal damper parameters
identi"ed from the modal analysis are the same as those from the seismic response analysis
under the given earthquake-excitation spectrum. Then, the e!ectiveness of the dampers of
optimal parameters in seismic response mitigation is examined. Because of the limitation of
space, only a few typical "gures are given in this paper.

Figure 7(a) and 7(b) depict the variations of the top-#oor displacement responses of the
left building and the right building, respectively, with relaxation time for several
zero-frequency damping coe$cients. It is seen that the top-#oor displacement responses of
Figure 7. Top-#oor displacement response of adjacent buildings versus relaxation time. (a) Left building:**,
C

0
"10(Ns/m); } } } }, C

0
"105(N s/m);* -*, C

0
"1)42]106(N s/m);* - -*, C

0
"5]106 (N s/m); (b) Right

building **, C
0
"10(N s/m); } } } }, C

0
"105(N s/m); * -*, C

0
"1)42]106(N s/m); * - -*,

C
0
"5]106(N s/m).
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Figure 8. Top-#oor displacement response of adjacent buildings versus zero-frequency damping coe$cient:
**, Left building; } } }, Right building.
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both the left and right buildings are not a!ected by relaxation time if the relaxation time is
less than 0)001 s. The fact that the response mitigation is not sensitive to relaxation time
within a certain range is very helpful for the practical application of #uid dampers. The
further increase in the relaxation time for 0)001 s may reduce the seismic response of the left
building, but it certainly increases the seismic response of the right building. In particular,
when the relaxation time reaches a value above 10 s, the two buildings behave almost as
though they are not connected. As a result, no matter what values the zero-frequency
damping coe$cient one, the damper totally loses its e!ectiveness. It is clear from the
foregoing two "gures that to achieve the maximum reduction of the dynamic response of
both buildings, the optimum relaxation time should be less than 0)001 s, which is the same
as the one found from the modal analysis. In addition, it can be seen from Figure 7(a) and
7(b) that there is an optimal zero-frequency damping coe$cient between 105 and
5]106 Ns/m.

To "nd the optimal zero-frequency damping coe$cient, the seismic responses including
the top-#oor displacement response, the base shear force response, and the top-#oor
acceleration response of both buildings are computed over a wide range of zero-frequency
damping coe$cient with the optimum relaxation time being 0)001 s. Figure 8 shows the
variations of the top-#oor displacement responses of the two buildings with zero-frequency
damping coe$cient. It is seen that the optimum zero-frequency damping coe$cient is
0)98]106 Ns/m for the left building or 1)42]106 Ns/m for the right building. The value
1)42]106 Ns/m is the same as the one found from the modal analysis. With the decrease in
the zero-frequency damping coe$cient from the optimum value, the performance of the
damper deteriorates gradually and as the zero-frequency damping coe$cient approaches
zero, the two buildings "nally return to the unlinked situation. On the other hand, if the
zero-frequency damping coe$cient increases from the optimum value, the performance of
the damper also declines and as the zero-frequency damping coe$cient becomes very large
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Figure 9. Variations of displacement response of adjacent buildings with height: **, Left building with
damper; }} } }, Right building with damper;* -*, Left building without damper;* - -*, Right building without
damper.
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the two buildings behave almost as though they are rigidly connected. As a result, the
top-#oor displacements of the two buildings become the same.

To demonstrate the overall e!ectiveness of the #uid dampers, the standard deviations of
displacement, shear force and acceleration responses at each #oor for each building with
and without #uid dampers are computed using the Kanai}Tajimi excitation spectrum.
Figure 9 shows the variations in the standard deviation of the displacement response
relative to the ground with the height of the buildings. The top-#oor displacement standard
deviation of the unlinked left building is 44)5 mm but with the #uid dampers installed, it is
reduced to 19)3 mm, leading to a 57% reduction of the response. For the right building, the
top-#oor displacement standard deviation is 60)8 mm for the unlinked building and
22)1 mm for the linked building, resulting in a 63% reduction. The reduction of the
displacement responses from the #uid dampers is also signi"cant for other #oors in either
building. The standard deviations of shear force in each story for each buildings are plotted
in Figure 10. The shear forces in all the stories of both the buildings are reduced after
installation of the #uid dampers. In particular, without the #uid dampers the bottom shear
force standard deviation is 1)48]107 N in the left building and 1)03]107 N in the right
building. With the optimum #uid dampers, the base shear force standard deviation is
reduced to 6)10]106 N in the left building and 3)56]106 N in the right building, leading to
a 59 and a 65% reduction respectively.

The variations of acceleration response with the building height, as shown in Figure 11,
are di!erent from displacement and shear force response pro"les shown in Figure 9 and 10.
The acceleration response for each unlinked building does not vary monotonically with
building height. This is due to the contributions from higher modes of vibration [4].
Clearly, the #uid dampers e!ectively mitigate the acceleration responses not only from low
modes of vibration but also from higher modes of vibration, as indicated by the response
curves of the linked adjacent buildings.
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Figure 10. Variations of shear force response of adjacent buildings with height:**, Left building with damper;
}} } }, Right building with damper;* -*, Left building without damper;* - -*, Right building without damper.

Figure 11. Variations of acceleration response of adjacent buildings with height: **, Left building with
damper; }} } }, Right building with damper;* -*, Left building without damper;* - -*, Right building without
damper.
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The values of #uid damper forces required for the achievement of signi"cant vibration
reduction of the adjacent buildings are important for the design of the #uid dampers and
adjacent buildings. In terms of the proposed mixed method, the #uid damper forces can be
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Figure 12. Variations of damper force response of adjacent buildings with height.
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easily calculated. The results are shown in Figure 12 for the variations of #uid damper force
with the building height. The maximum damper force is about 1)0]105 N at the top of the
buildings.

It is worthwhile to mention that the maximum reduction levels of seismic responses of the
adjacent buildings linked by the Maxwell model-de"ned #uid dampers are almost the same
as those linked by the Voigt model-de"ned viscoelastic dampers for the given two buildings
and the ground motion in the study. This is because in the case of the viscoelastic damper,
the required optimal damper sti!ness is quite small so that the Voigt model-de"ned
viscoelastic damper is almost a dashpot only. In the case of the #uid damper, the required
optimal relaxation time is very small and so the Maxwell model-de"ned #uid damper also
becomes almost a dashpot only. It is also worthwhile to mention that the results obtained in
this study are based on the two shear buildings having the same height, mass, and external
damping coe$cient but di!erent column shear sti!ness. For the two buildings with di!erent
mass and sti!ness ratios and di!erent heights, the e!ectiveness of the #uid dampers may be
di!erent. More information on this aspect can be found in reference [4].

6. CONCLUSIONS

An accurate and e!ective procedure for determining dynamic characteristics and seismic
response of adjacent buildings linked by the Maxwell model de"ned-#uid dampers has been
presented in this paper. The dynamic characteristics of damper-linked adjacent buildings
were obtained by solving the eigenvalue problem for real non-symmetric matrices. The
random seismic responses of the damper-linked adjacent buildings were determined by
a combination of the state-space method and the pseudo-excitation method.

Based on the studies on the example adjacent buildings, it was found that if damper
relaxation time and zero-frequency damping coe$cient were selected appropriately, the
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modal frequencies of the unlinked buildings could be retained and the modal damping
ratios of the system could be signi"cantly increased. The earthquake-induced dynamic
responses of both buildings could also be tremendously reduced. The optimal values of the
dampers found from the modal analysis with the maximum modal damping ratios as an
objective were almost the same as those determined from the seismic response analysis with
the maximum seismic response as an objective.

When compared with the adjacent buildings linked by the Voigt model-de"ned
viscoelastic dampers, the Maxwell model-de"ned #uid dampers have the same e!ectiveness
as the viscoelastic dampers under the conditions of the given two buildings ground motion.
Some other issues related to this study, such as the optimal position of dampers, the
three-dimensional vibration mitigation analysis including torsional e!ects, and the e!ect of
non-stationary earthquake excitation need a further investigation. The earthquake
simulation test to verify the theoretical results is also desirable.
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